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SOLVING UPWIND-BIASED DISCRETIZATIONS: DEFECT-CORRECTION

ITERATIONS

BORIS DISKIN∗ AND JAMES L. THOMAS†

Abstract. This paper considers defect-correction solvers for a second order upwind-biased discretization
of the 2D convection equation. The following important features are reported

1. The asymptotic convergence rate is about 0.5 per defect-correction iteration.
2. If the operators involved in defect-correction iterations have different approximation order, then

the initial convergence rates may be very slow. The number of iterations required to get into the
asymptotic convergence regime might grow on fine grids as a negative power of h. In the case of a
second order target operator and a first order driver operator, this number of iterations is roughly
proportional to h−1/3.

3. If both the operators have the second approximation order, the defect-correction solver demonstrates
the asymptotic convergence rate after three iterations at most. The same three iterations are required
to converge algebraic error below the truncation error level.

A novel comprehensive half-space Fourier mode analysis (which, by the way, can take into account the
influence of discretized outflow boundary conditions as well) for the defect-correction method is developed.
This analysis explains many phenomena observed in solving non-elliptic equations and provides a close
prediction of the actual solution behavior. It predicts the convergence rate for each iteration and the
asymptotic convergence rate. As a result of this analysis, a new very efficient adaptive multigrid algorithm
solving the discrete problem to within a given accuracy is proposed. Numerical simulations confirm the
accuracy of the analysis and the efficiency of the proposed algorithm. The results of the numerical tests are
reported.

Key words. convection, upwind-biased discretization, defect-correction iteration

Subject classification. Applied and Numerical Mathematics

1. Introduction. This is the first in a series of papers analyzing the efficiency of different iterative
algorithms solving upwind-biased discretizations of the convection operator. The model problem we study
in this paper is the 2D constant coefficient convection equation

LU ≡
(
ā · ∇

)
U = F (x, y),(1.1)

where ā = (a1, a2) is a given vector.

The solution U(x, y) is a differentiable function defined on the unit square (x, y) ∈ [0, 1] × [0, 1]. In
this paper, we deal mostly with the homogeneous equation F (x, y) ≡ 0. Exceptions when non-homogeneous
right-hand side functions F (x, y) are considered will be emphasized specifically.
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Let φ be the non-alignment angle (another name which is common in CFD is the angle of attack), i.e., the
angle between the vector ā and the positive direction of the x axis; t = tanφ = a2/a1 is the non-alignment
parameter. For simplicity we assume a1 ≥ a2 ≥ 0 and, therefore, 1 ≥ t ≥ 0. Then, Eq. (1.1) can be rewritten
as

∂ξU = F (x, y)/
√

a2
1 + a2

2,(1.2)

where ξ = x+ty√
1+t2

is a variable along the characteristic of Eq. (1.1).
Eq. (1.1) is supplied with Dirichlet boundary conditions at the inflow boundary x = 0 and periodic

conditions in the y direction.

U(0, y) = g(y), U(x, y) = U(x, y + 1),(1.3)

where g(y) is a given function.
This problem is discretized on the 2D Cartesian uniform grid with meshsize h in both the x and y

directions. Let ui1,i2 be a discrete approximation to the solution U(x, y) at the point (x, y) = (i1h, i2h).
Then, the second order accurate discretization corresponding to the Van Leer’s scheme with κ = 0 is defined
as

Lhui1,i2 ≡ 1
4
√

1+t2h

( (
ui1+1,i2 + 3ui1,i2 − 5ui1−1,i2 + ui1−2,i2

)
+t

(
ui1,i2+1 + 3ui1,i2 − 5ui1,i2−1 + ui1,i2−2

))
= fi1,i2 ;

LhuN,i2 ≡ 1
2
√

1+t2h

( (
3uN,i2 − 4uN−1,i2 + uN−2,i2

)
+t

(
3uN,i2 − 4uN,i2−1 + uN,i2−2

))
= fN,i2 ;

(1.4)

i1 = 1, 2, . . .N − 1, i2 = 1, 2, . . .N, N = 1/h;

u0,i2 = g(i2h), u−1,i2 = g′(i2h).

In computing Lh at nodes with i2 = 1, i2 = 2, and i2 = N the vertical periodicity is employed.
The outflow boundary conditions at i1 = N are discretized by the second order upwind scheme. The
discretization of the right-hand side function is fi1,i2 = F (i1h, i2h)/

√
a2
1 + a2

2. Function g′(y) is an additional
numerical boundary condition. In model problems where the exact solution U(x, y) is known, one can define
g′(y) = U(−h, y).

The discrete scheme (1.4) is upwind biased but not a pure upstream scheme since for defining the
operator value at the point (i1, i2), the solution values at the downstream points (i1 + 1, i2) and (i1, i2 + 1)
are required.

1.1. Defect-Correction Schemes. The subject of this paper is the defect-correction method (see [6])
which is widely used to iterate non-upwind discretizations. Let our target discrete problem be

Lhui1,i2 = fi1,i2 ,(1.5)

where Lh is a upwind-biased discretization of the convection operator (e.g., (1.4)).
Let Lh

st be a stable (say, the first or the second order pure upwind) discretization of the same convection
operator and ũi1,i2 be the current solution approximation. Then the improved approximation ūi1,i2 is
calculated in the following two steps.

2



1. The correction vi1,i2 is calculated by marching operator Lh
st with a right hand side being represented

by the residual computed for the target operator Lh with the current approximation. The inflow
boundary conditions for v are initialized with the zero values.

Lh
stvi1,i2 = fi1,i2 − Lhũi1,i2 ; v0,i2 = 0.(1.6)

2. The current approximation is corrected

ūi1,i2 = ũi1,i2 + vi1,i2 .(1.7)

The operator Lh
st is called the driver operator. The steps (1.6)-(1.7) can be repeated until the desired

accuracy is reached.
In many papers (e.g., [5]), authors studying the defect-correction iteration for non-elliptic problems ob-

served a slow convergence or even divergence in some common error norms for the initial iterations and
good asymptotic convergence rates afterwards. This behavior is quite different from that demonstrated
by the defect-correction method in solving elliptic problems where the asymptotic convergence rate is the
slowest one. We realized that this “non-elliptic” feature is explained by some properties associated with the
cross-characteristic interaction (e.g, dissipation) in the operators involved in the defect-correction iterations.
Namely, this cross-characteristic interaction and the frequency of an incoming component define the pene-
tration distance (also termed “survival distance” in [4]) of this component. The penetration distance is the
distance from the inflow boundary on which the discrete solution of the homogeneous problem reasonably
approximates the continuous one (i.e., the L∞ norm of the relative discretization error is essentially less than
1). The ratio of penetration distances of the operators Lh and Lh

st determines the number of defect-correction
sweeps required to get into the asymptotic convergence regime. Moreover, comparison of the penetration
distances is a constructive and convenient tool allowing one to decide which grid is appropriate for a given
problem, provided information is known regarding flow direction variations, the frequency content of inflow
boundary conditions, the characteristic size of the domain, and the accuracy desired.

The analysis of the first differential approximations (FDA) (see [7]) to the operators involved in the
defect-correction iterations is presented in Sec. 1.2. It provides us with some qualitative description of
corresponding penetration distances. This analysis concludes that if the operators Lh and Lh

st have different
approximation orders (the case described in Sec. 2) then the efficiency of defect-correction iterations is,
actually, grid dependent. It means that the maximal number of sweeps which might be required to reach
the asymptotic convergence rate (or to reduce the algebraic error to the truncation error level) on fine grids
is larger than on coarse grids. This phenomenon relates to the fact that some smooth error components are
poorly approximated by the driver operator. In other cases, when the operators Lh and Lh

st have the same
approximation order (see Sec. 3), the defect-correction method can serve as a very efficient solver.

1.2. Poor Characteristic Component Approximation. The non-ellipticity of the operators to be
analyzed introduces a new issue in the standard discretization analysis common for elliptic operators. The
discretization error of a discrete elliptic operator regarding a given component is defined by (1) the operator’s
approximation order and (2) frequencies of the component. For non-elliptic operators, the main factor is
(3) the penetration distance d of this component. The penetration distance of an incoming component
depends on its frequency ω, i.e., d = d(ω). Note, that in the homogeneous differential problem (1.1)-
(1.3) all the incoming oscillations are translated along the characteristics without changing their phases
and amplitudes. However, on a grid non-aligned with the characteristic, any discretization unavoidably
introduces some numerical cross-characteristic interaction which damps amplitudes and/or shifts phases of
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the incoming components. A quantitative measure of this numerical cross-characteristic interaction is the
coefficient of the largest cross-characteristic derivative appearing in the first differential approximation to the
operator under consideration. When the cross-characteristic interaction is strong, there are no approximation
properties provided by the discrete operator beyond some O

(
d
)

neighborhood of the inflow boundary. A
discretization is considered to be accurate with respect to a given incoming component if and only if the
penetration distance of this component is comparable with (or exceeds) the characteristic size of the domain.
Of course, the penetration distance of a given component increases on grids with smaller mesh sizes. The
coarsest grid on which the penetration distance approaches the characteristic size of the domain can be
considered as the optimal grid for resolving this component. The expected discretization behavior (i.e, the
discretization error of a p-th order accurate discrete operator is reduced by factor 2p when the grid mesh size
is refined to h/2) is observed only for grids which provide an accurate resolution for all the essential inflow
components.

Let Lh be an accurate discretization with respect to some particular incoming component. To approxi-
mate the solution of Lh operator by solving some less accurate operator Lst (with a correspondingly shorter
penetration distance), one has to iterate Lst as many times as needed to attain accuracy up to the Lh

penetration distance. The following analysis shows that the required number of iterations depends on some
power of N , where N is the number of grid points in the characteristic direction. To be precise, the number
of iterations is proportional to N

p−r
p+1 , where p and r are the approximation orders of operators Lh and Lst

respectively. Below, we derive the predicted dependence for a particular case where p = 2 and r = 1.
Before proceeding with the analysis, let us introduce a definition. The components which are much

more smooth in the characteristic direction than in other directions are referred to as the characteristic
components.

The target operator Lh approximates the differential operator L from (1.1) with second order accuracy.
It means that its first differential approximation (FDA) is

FDA
(
Lh

)
= ∂ξ − C2h

2

(
∂ηηη + ∂ξB

2
(
∂ξ, ∂η

))
,

where C2 is a constant, η = −tx+y√
1+t2

is the cross-characteristic coordinate and B2
(
∂ξ, ∂η

)
is a linear combina-

tion of the second-order derivatives in ξ and η. For characteristic components (in terms of which ∂η � ∂ξ),
this approximation is simplified to

FDA
(
Lh

)
≈ ∂ξ − C2h

2∂ηηη .(1.8)

Let the driver operator Lh
st have the first order accuracy. Then, its FDA taken for the characteristic

components is

FDA
(
Lh

st

)
≈ ∂ξ − C1h∂ηη,(1.9)

where C1 is a positive constant.
We are going to perform a half-space mode analysis for the first differential approximations to the

operators Lh and Lh
st and demonstrate in this way that the driver operator Lh

st (and the whole defect-
correction iterative process) is likely to approximate poorly some smooth characteristic components of the
second order solution.

Following [2] and [4], the half-space mode analysis presented in this section is focused on approximating
the characteristic components. It considers the discretizations of the homogeneous equation (1.1) on the half
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space
{
(x, y) : x ≥ 0

}
with boundary conditions (on x = 0) being represented by one Fourier mode eiωy at

a time. The purpose of this analysis is to estimate the penetration distance as a function of the incoming
oscillations.

For the driver operator, we seek a bounded differentiable function φ(x, y) satisfying the following equation
and boundary conditions

∂ξφ− C1h∂ηηφ = 0; φ(0, y) = eiωy.(1.10)

The exact solution can be written out as

φ = eC1hβ2ξ+βη,

where β = a + ib is a complex number with a and b satisfying the system of the algebraic equations{
C1h(a2 − b2)t + a = 0;
2C1habt + b =

√
1 + t2ω.

From the system, a = O(h) and b =
√

1 + t2ω + O(h). Therefore, the leading term of the bounded solution
to (1.10) is

φ ∼ e−C1h(1+t2)ω2ξ+i
√

1+t2ωη.(1.11)

The factor e
√

1+t2(iωη) describes the exact solution of the continuous problem while the factor e−C1h(1+t2)ω2ξ

is the influence of the numerical cross-characteristic interaction. In the case of the first order driver, this
is a dissipation which damps the amplitude. From (1.11), one can observe that the penetration distance
on which this damping becomes O(1) is proportional to d(1) = 1

ω(ωh) . In a similar way one can derive
the penetration distance of a second order scheme, which is proportional to d(2) = 1

ω(ωh)2 . For even order
schemes, the only difference is that the numerical cross-characteristic interaction usually affects the phase
of the incoming component rather than the amplitude. The comparison of the penetration distances d(1)

and d(2) implies that the number Nsweeps of defect-correction sweeps (1.6)-(1.7) needed to approximate the
incoming component eiωy to the second order accuracy is

Nsweeps ∼ d(2)

d(1)
=

1
ωh

.(1.12)

It is obvious that this number increases when ω tends to zero. On the other hand, if ω is sufficiently small
(e.g., the component is nearly constant) then the penetration distance for any scheme covers the entire
domain and the desirable accuracy is achieved. This consideration implies that the worst case is the case
d(2) ≈ R and d(1) � R, where R is a characteristic size of the domain (R =

√
1 + t2 in our problem). Thus,

on the given grid, the worst component is ω ∼ R− 1
3 h−

2
3 , and for this component

Nsweeps ∼
(

R

h

) 1
3

.

This meshsize dependence was first mentioned in [3]. It is really not very harmful and in many practical
calculations it can hardly be noticed. However, an accurate choice of data in the numerical experiments
allows us to observe this behavior.

Further, in Sec. 2, a defect-correction method with the first order driver is considered. We introduce
another (nearly) precise discrete half-space mode analysis in Sec. 2.1 which then will be used to predict
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the accuracy and the efficiency of the defect-correction iterations (tested in Sec. 2.3). Some analytical
predictions about the asymptotic convergence rate of residual norms are made in Sec. 2.2 and are validated
in Sec. 2.3. The comparison of the analytical and the numerical results for the defect-correction method
with a second order driver is presented in Sec. 3. A very efficient adaptive multigrid algorithm yielding the
approximate solution to a desired accuracy is proposed and tested in Sec. 4.

2. Defect-Correction Method with First Order Driver (DC1). The driver used in the DC1
algorithm is the first order upwind discretization of the convection operator (1.1).

L1ui1,i2 =
1√

1 + t2h

((
ui1,i2 − ui1−1,i2

)
+ t

(
ui1,i2 − ui1,i2−1

))
;(2.1)

i1 = 1, 2, . . .N, i2 = 1, 2, . . .N ;

u0,i2 = g(i2h).

This scheme is stable for downstream marching. In our case of y-directional periodicity, the marching of this
scheme requires an implicit line-by-line rather than simple pointwise passage. The entire defect-correction
iterative process has already been defined above in Sec. 1.1.

2.1. Half-Space Mode Analysis. In this section we exhibit a discrete half-space mode analysis of
the defect-correction method which is distinct from the FDA analysis presented in Sec. 1.2: it considers
the discretizations themselves rather than their differential approximation. This tool is much more accurate
(and cumbersome at the same time). It can be used to explain in detail many phenomena observed in solving
non-elliptic equations and provides a close prediction of the actual solution behavior.

This analysis considers each discretization on the half space as it is, while the boundary condition is
represented by a Fourier component. In this way the original multidimensional problem is translated into a
1D discrete problem, where the frequencies of the boundary Fourier component are considered as parameters.
To regularize the half-space problem, the solution is not allowed to grow faster than a polynomial function.
The goal of this analysis is the comparison with each other of (1) the exact solution of the differential
problem, (2) the exact solution of the discrete problem and (3) the approximate solutions at different stages
of the solver.

2.1.1. Exact Solutions and Discretization Error. Choosing the domain to be {(x, y) : x ≥ 0}, for
each Fourier frequency ω2, the differential problem (1.2), (1.3) can be reformulated in the following way:
find function U(x, y) such that

∂ξU = iβξe
i(ω1x+ω2y), U(0, y) = eiω2y,

where βξ = (ω1 + tω2)/
√

1 + t2 is the characteristic frequency (βξ ≈ 0 for characteristic components). The
exact solution of this problem is U(x, y) = ei(ω1x+ω2y).

The discrete counterpart is

Lhui1,i2 = iβξe
i(Ω1i1+Ω2i2), u0,i2 = eiΩ2i2 , u−1,i2 = ei(−Ω1+Ω2i2),(2.2)

where Lh is the target discrete operator, Ω1 = ω1h and Ω2 = ω2h are normalized frequencies.

We seek a solution of the discrete problem in the form
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ui1,i2 = φi1e
iΩ2i2 .(2.3)

Then, the problem (2.2) can be reformulated for φi1 as

a−2

(
Ω2

)
φi1−2 + a−1

(
Ω2

)
φi1−1 + a0

(
Ω2

)
φi1 + a1

(
Ω2

)
φi1+1 =

√
1 + t2hiβξe

iΩ1i1 ;(2.4)

φ0 = 1, φ−1 = e−iΩ1 ,(2.5)

where

a−2

(
Ω2

)
=

1
4
;

a−1

(
Ω2

)
= −5

4
;

a0

(
Ω2

)
=

3
4

+
t

4

(
e−i2Ω2 − 5e−iΩ2 + 3 + eiΩ2

)
;(2.6)

a1

(
Ω2

)
=

1
4
.

The solution to (2.4), (2.5) is given by

φi1 = W0e
iΩ1i1 +

(
1−W0

)(
C0r

i1
0 + C1r

i1
1

)
,(2.7)

where r0 and r1 are the roots of the cubic equation

a−2

(
Ω2

)
+ a−1

(
Ω2

)
r + a0

(
Ω2

)
r2 + a1

(
Ω2

)
r3 = 0,

satisfying to |r| ≤ 1,

W0 =
√

1 + t2hiβξ

a−2

(
Ω2

)
e−i2Ω1 + a−1

(
Ω2

)
e−iΩ1 + a0

(
Ω2

)
+ a1

(
Ω2

)
eiΩ1

;

C0 =
r0

(
r1 − eiΩ1

)
eiΩ1

(
r1 − r0

) ;

C1 =
r1

(
r0 − eiΩ1

)
eiΩ1

(
r0 − r1

) .

We avoid here considering in details the exceptional cases where either the denominator in the expression
for W0 turns out to be zero or r0 = r1. In these cases, the form of the solution (2.7) remains the same while
W0 and/or Cj(j = 0, 1) might turn to some linear functions of i1.

Thus, the discretization error is calculated as

U
(
i1h, i2h

)
− ui1,i2 =

[
eiΩ1i1 − φi1

]
eiΩ2i2

=
(
1−W0

)[
eiΩ1i1 − C0r

i1
0 − C1r

i1
1

]
eiΩ2i2 ;
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2.1.2. DC1 Iteration. Let the boundary conditions be represented by a discrete Fourier mode eiΩ2i2 .
Then, the first order driver operator can be rewritten as

L1ũi1,i2 ≡
1

h
√

1 + t2

[
d−1

(
Ω2

)
φ̃i1−1 + d0

(
Ω2

)
φ̃i1

]
eiΩ2i2 ,

where ũi1,i2 = φ̃i1e
iΩ2i2 is an approximate solution and

d−1

(
Ω2

)
= −1; d0

(
Ω2

)
= 1 + t

(
1− e−iΩ2

)
.

The general form of components appearing at any stage of the defect-correction iteration is

P (i1)qi1eiΩ2i2 ,(2.8)

where P (i1) is a complex-coefficient polynomial of i1 and q (|q| ≤ 1) is the base of the given component. This
form is invariant under all the transformations occurring in the DC1 iteration. In fact, for any component, the
only part to be changed is the polynomial P (i1) which will be referred to as the amplitude of the corresponding
component qi1eiΩ2i2 . This allows us to analyze separately any building block of this algorithm, such as the
calculation of residual or solving the driver equation. The underlying idea is to use computer capabilities
already at the step of deriving an analytic representation for the current solution approximation. We actually
analyze the response of each building block to an input component in the form (2.8). The output of the
block is formulated in the same form (2.8), except that the block may produce several output components,
differing in their bases q and/or frequencies Ω2.

Usually, the initial solution approximation satisfying the boundary conditions cannot be represented as
a sum of a finite number of components in the form (2.8), e.g., the zero approximation inside with given
(non-zero) boundary conditions at i1 = 0 and i1 = −1. In this case, the collection of analytical components
(2.8) well describes the distant behavior of the approximation while an adjustment is still needed in the
neighborhood of the boundary. The approximation in the neighborhood is given by an additional pointwise
component

{
Bi1e

iΩ2i2 , 0 < i1 ≤ N0

0 otherwise,

where Bi1 is a complex-valued vector of the length N0. N0 = 0 at the beginning for many reasonable
initial approximations including (1) zero approximation, (2) solution of the driver equation, and (3) solution
interpolated from the coarse grid in the framework of a 2-level multigrid solver. Then, N0 is increased by
1 in each DC1 iteration. The segment 0 < i1 ≤ N0 we will call the pointwise representation region and the
vector B will be called the pointwise amplitude while the domain N0 < i1 will be referred to as the analytic
representation region.

Thus, the first necessary step in analyzing how the DC1 iteration affects the given approximation is to
separate all the components (including the pointwise component) in the approximation.

Let vi1,i2 = P (i1)qi1eiΩ2i2 be a particular component of the current solution approximation. We are
going to trace all the changes happening with the amplitude P (i1) of this component in a DC1 iteration. The
changes in the pointwise component will be emphasized as well. An example of the DC1 iteration analysis
will be presented below in this section.
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Taking Residual.. The residual amplitude R(i1) of the component vi1,i2 is calculated as

R(i1) = Λ− 1
h
√

1 + t2

[
a−2

(
Ω2

)
q−2P (i1 − 2) + a−1

(
Ω2

)
q−1P (i1 − 1)

+a0

(
Ω2

)
P (i1) + a1

(
Ω2

)
qP (i1 + 1)

]
,

where Λ = iβξ if qi1eiΩ2i2 is the right-hand side component (q = eiΩ1), otherwise Λ = 0.
Let N ′

0 = N0 + 2 and Bi1 = 0, i1 > N0. Then, the pointwise residual function is computed in the
following way

Rpt
i1

= − 1
h
√

1 + t2




a−2

(
Ω2

)
S−1 + a−1

(
Ω2

)
S0 + a0

(
Ω2

)
Bi1 + a1

(
Ω2

)
Bi1+1, i1 = 1;

a−2

(
Ω2

)
S0 + a−1

(
Ω2

)
Bi1−1 + a0

(
Ω2

)
Bi1 + a1

(
Ω2

)
Bi1+1, i1 = 2;

a−2

(
Ω2

)
Bi1−2 + a−1

(
Ω2

)
Bi1−1 + a0

(
Ω2

)
Bi1 + a1

(
Ω2

)
Bi1+1, 3 ≤ i1 ≤ N ′

0;

0, otherwise.

where S−1 and S0 are the boundary conditions (at i1 = −1 and i1 = 0 respectively) in the problem associated
with the pointwise representation region.

Correction Calculation.. The amplitude C(i1) of the correction to the component vi1,i2 is calculated
from the equation

d−1

(
Ω2

)
q−1C(i1 − 1) + d0

(
Ω2

)
C(i1) = h

√
1 + t2R(i1).

If vi1,i2 is not an eigencomponent for the driver operator
(
q 6= d1 = −d0(Ω2)/d−1(Ω2)

)
, then the power of

the polynomial C(i1) is the same as of the polynomial R(i1); otherwise the C(i1) power is higher.
To satisfy the zero conditions at the incoming boundary i1 = 0 which accompany the correction equation,

one has to complete the correction with the eigencomponent D0d
i1
1 eiΩ2i2 with the amplitude

D0 = −C(0).

The pointwise correction Cpt
i1

is calculated from the following system of linear equations.




Cpt
N ′

0
= 0

d−1

(
Ω2

)
Cpt

i1
+d0

(
Ω2

)
Cpt

i1+1 = h
√

1 + t2Rpt
i1+1, 0 < i1 < N ′

0.

The amplitude D1 of the accompanying eigencomponent is computed by

D1 = −
h
√

1 + t2Rpt
1 − d0

(
Ω2

)
Cpt

1

d−1

(
Ω2

) .

New Amplitude.. The new amplitude P̃ (i1) of the component vi1,i2 is calculated as

P̃ (i1) = P (i1) + C(i1).

The corrected pointwise amplitude B̃i1 and the new boundary Ñ0 of the pointwise representation region are

B̃i1 = Bi1 + Cpt
i1

; Ñ0 = N0 + 1.

The amplitude D(i1) of the eigencomponent is also changed to D̃(i1)

D̃(i1) = D(i1) + D0 + D1.

9



2.1.3. Discretization of Outflow Boundary Conditions. The discretization of the outflow bound-
ary conditions can be taken into account as well. Discretized outflow boundary conditions usually imply
some special discretization stencil different from that in the interior. In order to incorporate this feature
into the analysis we have to introduce another pointwise representation zone near the outflow boundary. In
other words, an additional pointwise component is required to make the half-space analysis be precise for all
the y-periodic problems. In the analysis tests below (Sec. 2.3.1) we did not implement this adjustments. It
was realized that the analysis is actually precise even without this special care about the outflow boundary
conditions.

2.1.4. Example of Analysis. Let us consider the homogeneous problem (βξ = 0) with boundary
conditions given by (2.5) and the zero initial approximation inside of the half-space 0 < i1. At the beginning
the only component involved in calculation is the zero-length (N0 = 0) pointwise component. The problem
associated with this component is

a−2

(
Ω2

)
Bi1−2 + a−1

(
Ω2

)
Bi1−1 + a0

(
Ω2

)
Bi1 + a1

(
Ω2

)
Bi1+1 = 0;

S0 = 1, S−1 = e−iΩ1

1. The extended boundary of the pointwise approximation region is N ′
0 = 2.

2. The residual function is


Rpt
1 = − 1

h
√

1+t2

(
a−2

(
Ω2

)
S−1 + a−1

(
Ω2

)
S0

)
;

Rpt
2 = − 1

h
√

1+t2
a−2

(
Ω2

)
S0;

Rpt
i1

= 0, 2 < i1.

3. A non-zero correction proves to be only at point i1 = 1

Cpt
1 =

h
√

1 + t2Rpt
2

d−1

(
Ω2

) ;

B1 = Cpt
1 ;

N0 = 1;

The eigencomponent is introduced with the amplitude

D1 = −
h
√

1 + t2Rpt
1 − d0

(
Ω2

)
Cpt

1

d−1

(
Ω2

) .

4. The approximation obtained at the end of the first DC1 iteration is

ũi1,i2 = Q(i1)eiΩ2i2

Q(i1) =

{
D1d1 + B1, i1 = 1;
D1d

i1
1 , i1 > 1;

5. On the next iteration the initial approximation contains the eigencomponent with the amplitude
D(i1) = D1. Therefore, the boundary conditions in the problem associated with the pointwise
component is changed to

S0 = 1−D(0), S−1 = e−iΩ1 −D(−1)/d1.

10



The calculations can be continued. Approximations obtained in these iterations can always be repre-
sented as

ũi1,i2 = Q(i1)eiΩ2i2 ,

Q(i1) =

{
D(i1)di1

1 + Bi1 , 1 ≤ i1 ≤ N0;
D(i1)di1

1 , N0 < i1;

2.1.5. Algebraic and Total Errors. Let additional component wi1,i2 = W (i1)eiΩ1i1eiΩ2i2 be involved
into the calculation due to the right-hand side function; then, after any iteration the current approximation
representation is a sum of this component, the eigencomponent di1,i2 = D(i1)di1

1 eiΩ2i2 , and the pointwise
component. Thus, the current solution approximation is

ũi1,i2 = Q(i1)eiΩ2i2 ,(2.9)

Q(i1) =

{
W (i1)eiΩ1i1 + D(i1)di1

1 + Bi1 , 1 ≤ i1 ≤ N0;
W (i1)eiΩ1i1 + D(i1)di1

1 , N0 < i1.

The algebraic error function which is the difference between the exact and approximate solutions of the
discrete problem is given by

ũi1,i2 − ui1,i2 =
[
Q(i1)−

(
W0e

iΩ1i1 + C0r
i1
0 + C1r

i1
1

)]
eiΩ2i2 .(2.10)

The total error function defined as the difference between an approximate solution of the discrete problem
and the exact solution of the differential problem is calculated as

ũi1,i2 − U(i1h, i2h) =
[
Q(i1)− eiΩ1i1

]
eiΩ2i2 .(2.11)

Involving other components, either due to a non-zero initial approximation or since the algorithm itself
produces additional components, extends the number of items in (2.9) with straightforward changes in the
algebraic and total error expressions (2.10) and (2.11).

2.2. Convergence in Residual Norms. The matrix analysis described in this section can be con-
sidered as the asymptotic case of the half-space analysis (with the discretized outflow boundary conditions)
exhibited in Sec. 2.1. In this asymptotic regime, the pointwise representation region covers all the domain.
Let the problem (1.1)-(1.3) be defined on a layer (x, y) ∈ [0, 1]× (−∞, +∞) with the input data (functions
F (x, y) and g(x, y)) such that the function U(x, y) = Φ(x)eiωy is the exact solution of the problem. The
approximate solution of the corresponding discrete problem (1.4) is sought in the form (2.3). The problem
for the discrete function φi1 is derived similar to the problem (2.4)-(2.5)

φ0 = Φ(0), φ−1 = Φ(−h),

a−2

(
Ω2

)
φi1−2 + a−1

(
Ω2

)
φi1−1 + a0

(
Ω2

)
φi1 + a1

(
Ω2

)
φi1+1(2.12)

= h
√

1 + t2
(
Φx(i1h) + itωΦ(i1h)

)
, i1 = 1, . . . , N − 1;

b−2

(
Ω2

)
φN−2 + b−1

(
Ω2

)
φN−1 + b0

(
Ω2

)
φN = h

√
1 + t2

(
Φx(1) + itωΦ(1)

)
.

Functions aj (j = −2,−1, 0, 1) are defined in (2.6),

b−2

(
Ω2

)
=

1
2
;
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b−1

(
Ω2

)
= −2;(2.13)

b0

(
Ω2

)
=

3
2

+
t

2

(
e−i2Ω2 − 4e−iΩ2 + 3

)
.

Let the N -dimensional vector φ̃ =
(
φ̃i1

)
, (i1 = 1, . . . , N) be an approximate solution to (2.12) with the

algebraic error ē =
(
ei1

)
, i.e.,

φ̃ = φ̄− ei1 ,

where φ̄ is the exact solution to (2.12).

The correction δ̄ =
(
δi1

)
is calculated from the linear system of N equations

Dδ̄ = −T ē,

where N -by-N banded matrices T and D correspond to the target operator and to the driver operator
respectively.

T =




a0 a1 0 0 0 · · · 0 0 0 0
a−1 a0 a1 0 0 · · · 0 0 0 0
a−2 a−1 a0 a1 0 · · · 0 0 0 0
0 a−2 a−1 a0 a1 · · · 0 0 0 0
...

...
...

...
...

...
...

...
...

...
0 0 0 0 0 · · · a−2 a−1 a0 a1

0 0 0 0 0 · · · 0 b−2 b−1 b0




,

D =




d0 0 0 · · · 0 0
d−1 d0 0 · · · 0 0
0 d−1 d0 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · d−1 d0




.

Then, the amplification matrix Ge of the defect correction iteration

ēnew = Geē

becomes

Ge = I −D−1T.

Since the residual is usually used in practice to monitor the error, we can modify Ge to measure the residual
reduction, as

Gr = TGeT
−1

so that

r̄new = Gr r̄

12



where

r̄ = −T ē

represents the discrete residual. If we wish to bound the amplification of the residual, we could use the
spectral radius of Gr (ρ(Gr)) or the L2-norm of the matrix Gr (||Gr ||2 =

√
ρ(G∗

rGr)). The spectral radius
ρ(Gr) is usually referred to as the asymptotic convergence rate, i.e., the rate corresponding to a large number
of iterations. The L2-norm (||Gr||2) indicates the “worst” possible convergence rate.

2.3. Numerical Tests.

2.3.1. Verification of Analytical Predictions: Discretization Accuracy Test. The discretiza-
tion accuracy of an operator on the grid of meshsize h for a characteristic component ei(ω1x+ω2y) (where
ω1 + tω2 ≈ 0) is defined by the penetration distance of this component. (See Sec. 1.2.) The first differential
approximation to the target second order accurate discrete operator (1.4) is defined by

FDA
(
Lh

)
= ∂x + t∂y − h2

12
√

1 + t2

(
∂xxx + t∂yyy

)
.

For characteristic components, it turns to

FDA
(
Lh

)
= ∂ξ − h2

12
(
1 + t2

)2

(
−t3 + t

)
∂ηηη,(2.14)

where the non-alignment parameter t and the characteristic variables ξ and η are defined in Sec. 1. Notice,
when t ≈ 1, the coefficient of the third derivative with respect to η vanishes in the FDA and the next term
(the fourth derivative) becomes important.

In the general case 0 ≤ t ≤ 1, the discretization error of Lh (DE(Lh)) can be approximately calculated
from the asymptotic solution of the half-space problem associated with (2.14). The derived estimate is

DE(Lh) = ei(ω1x+ω2y)

(
1− e−

ξ
d2

)
,

where

d2 =
−i12

√
1 + t2

ω2

(
ω2h

)2(
−t3 + t

) .(2.15)

Definition 1. We say that a discretization has the accuracy ε for the given characteristic component
with the inflow y-directional frequency ω2 on the distance δ (measured along the characteristic) from the
boundary if the following inequality holds∣∣∣∣1− e−

ξ
d

∣∣∣∣ ≤ ε, for ξ ≤ δ,(2.16)

where d is the normalized penetration distance of the given characteristic component. Note, that ε defines
the relative accuracy, hence 0 ≤ ε ≤ 1 and ε ≈ 1 indicates very poor accuracy. For operator (1.4), d = d2

and the penetration distance of the ε-accuracy is estimated from (2.16) as

δ2 = |d2| arccos(1 − ε2/2).(2.17)
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Table 2.1

Penetration distances (in meshsizes) of the 1% accuracy.

Penetration distances
t ω2 target operator driver operator

δ
(2)
a δ

(2)
A δ

(2)
N δ

(1)
a δ

(1)
A δ

(1)
N

2π 256 256 256 139.034 139 139
4π 256 256 256 34.758 34 34

0.2 8π 256 256 256 8.69 8 8
10π 256 256 256 5.561 5 5
16π 82.564 81 81 2.172 2 2

2π 256 256 256 34.758 34 34
4π 256 256 256 8.69 8 8

0.6 8π 256 256 256 2.172 2 2
10π 169.092 162 162 1.39 1 1
16π 41.282 37 37 0.543 0 0

2π 256 256 256 23.172 23 23
4π 256 256 256 5.793 5 5

0.8 8π 256 256 256 1.448 1 1
10π 225.456 181 181 0.927 0 0
16π 55.043 35 35 0.362 0 0

The first differential approximation to the first order accurate driver operator (2.1) taken for the char-
acteristic components is given by

FDA
(
L1

)
= ∂ξ − h

2
(
1 + t2

) 3
2

(
t2 + t

)
∂ηη,

d1 =
2
√

1 + t2

ω2

(
ω2h

)(
t2 + t

)(2.18)

and the ε-accuracy penetration distance is

δ1 = −d1 ln(1 − ε).(2.19)

The first test we perform to validate the discrete half-space analysis from Sec. 2.1 and analytical
expressions (2.17) and (2.19) for penetration distances of characteristic components. We calculate penetration
distances of ε = 0.01 accuracy for different values of t and ω2 for operators (1.4) and (2.1). Our aim is to
compare the following distances from the boundary (measured in meshsizes) : (1) calculated by formulas
(2.17) and (2.19) (δ(j)

a = δj/
√

1 + t2/h, j = 1, 2), (2) derived from the half-space analyses from Sec. 2.1
(δ(j)

A ) and (3) computed in direct numerical simulations (δ(j)
N ). In analytical calculations, the exact solution

of the differential problem (1.1), (1.3) is always assumed to be eiω2(−tx+y). In direct numerical simulations
the exact solution has been chosen to be sin(ω2(−tx + y)). The numerical distance is considered to be m

if the L∞ norm of the discretization error on (m + 1)-th vertical line is greater than 0.01. The simulation
grid is 257 × 257. If in analytical calculations the result exceeded 256 (the penetration distance covers all
the domain) it has been set to 256. Table 2.1 contains the test results. The two obvious conclusions are
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1. The discrete half-space analysis is actually precise. In all the tests, the results predicted by this
analysis and obtained in real numerical calculations coincide.

2. The inequality (2.16) provides a good estimate of the penetration distance, especially, for the first
order operator or for small angles of attack (t ≤ 0.6). Some deterioration in predicting the second
order operator penetration distances for nearly diagonal alignment is explained by the fact that the
penetration distance in case of 45o angle of attack (t = 1) is determined by the third order term
which is not taken into account in calculating d2. Nevertheless, the estimate obtained from (2.16)
seems to be reliable to predicting the key property: whether the penetration distance is comparable
with (or larger than) the characteristic size of the domain. Moreover, it gives us a possibility to
estimate the ratio between the penetration distances of the target and driver operators even on very
coarse grids where one of the distances (or both of them) is shorter than one mesh size.

2.3.2. Convergence to Within the Given Accuracy. Let function U(x, y) = ei(ω1x+ω2y) be the
exact solution of (1.1) and (1.3). We can reformulate the discrete problem in the following way: we are
looking for a discrete function ũi1,i2 (an approximate solution to (1.4)) that possesses the total error (in the
L∞ norm) which is not greater than given ε, i.e.,

max
i1,i2

∣∣∣ũi1,i2 − U(i1h, i2h)
∣∣∣ ≤ ε.

In order to find such a solution, the discretization error of the target operator, of course, should satisfy

max
i1,i2

∣∣∣ūi1,i2 − U(i1h, i2h)
∣∣∣ ≤ ε,(2.20)

where ūi1,i2 is the exact solution of (1.4). This, in particular, implies that the target operator penetration
distance δ2 of the ε-accuracy on the uniform grid with spacing h for incoming frequency ω2 is larger than
the characteristic size R of the domain (R =

√
1 + t2 in our case). The condition (2.20) actually defines the

coarsest possible grid on which the desired ε-accuracy can be achieved. The goal of converging within the
discretization error, which is typical in FMG type algorithms, can be considered as a particular case where
ε is the target operator discretization error.

The analysis from Sec. 2.1 provides us with an upper bound ω̄ for frequencies of incoming Fourier modes
ω2 satisfying (2.20). The same analysis predicts the number of defect-correction sweeps Nsweeps required to
achieve an approximation possessing the ε-accuracy. Both ω̄ and Nsweeps depend, of course, on the mesh
size h of the given grid, on the desired accuracy ε, and on the non-alignment parameter t.

Fig. 1 demonstrates the typical behavior of ω̄ and Nsweeps as functions of the mesh size h. In all the
experiments we performed, the 1%-accuracy (ε = 0.01) was picked on. The choice of angles of attack was
representative. For simplicity, we always started from the initial approximation in the interior of the domain
(i1 > 0) obtained from the solution of the driver operator.

The results corroborate the conclusions made in Sec. 1.2 about the growth of the number of cycles
required to achieve an approximation possessing the ε-accuracy. For obviousness we added to the lower plot
on Fig. 2.1 the solid line corresponding to the function h−1/3.

The practical conclusions are the following.
1. The number of DC1 iterations required to achieve a given accuracy grows as some (negative) power

of h (approximately h−
1
3 ).

2. For any given (continuous) boundary conditions, the analysis is able to provide predictions of the
grid required to solve this problem to a desired accuracy and how many defect-correction sweeps
should be performed to achieve this accuracy.
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Fig. 2.1. ω̄ and Nsweeps as functions of the meshsize h.

3. If the flow direction is variable, one should select ω̄ and Nsweeps such that ω̄ satisfies (2.20) for all
the possible angles of attack and Nsweeps iterations provide the desired accuracy for characteristic
components with the incoming frequency ω̄ for any possible t.

4. A smart choice of the initial approximation (e.g., the initial approximation being interpolated from
the coarse grid in the framework of an FMG solver) can sometimes reduce Nsweeps but the qualita-
tive behavior remains the same: the number of required defect-correction iterations grows as some
negative power of h in passing to finer grids.

There are several ways to change the algorithm in order to get Nsweeps independent on the meshsize h:

1. The first possibility which is studied in Sec. 3 is to apply a driver of the same approximation order
as the target operator. This cure is actual only for second order operators since for higher-order
scheme there are no stable upwind discretizations.

2. The second way is to use a predictor-corrector technique for solving the target operator. This method
suggests some marching along the flow direction. If this is possible (there are no recirculation zones),
then this approach is, probably, one of the best allowing to achieve an optimal efficiency.

3. The third method is a smart multigrid algorithm which employs the coarse-grid operators approxi-
mating the characteristic component FDA of the target operator.

The two latest approaches are the subjects of future papers.

Before going to the defect-correction scheme with the second order driver we consider the asymptotic
convergence of the first order driver scheme.

2.3.3. Asymptotic Convergence. First of all we believe that the most important characteristic of the
solver efficiency is the ability to fast solve the problem to the desired accuracy. The fact that the accuracy
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Fig. 2.2. DC1: residual convergence rate history.

has already been reached can be established from the comparison of the solutions on grids with different
meshsizes. In this view, delivering the residuals to the computer zero is less important. Other criteria (rather
than the vanished residuals) should be used to decide on stopping iterations on the given grid and passing
to a finer grid. However, the principal possibility to drive residuals to the computer zero is considered to be
useful. Tests below demonstrate that DC1 iterations possess this property.

It was observed by many researchers that the asymptotic convergence rate of the defect-correction solver
for (1.4) is about 0.5 per iteration. (In [5], authors emphasized that the asymptotic convergence rate can
somehow deteriorate for the central and the pure upwind target discretizations.) This asymptotic convergence
rate can actually be further improved by a proper residual weighting ([1] suggests the weight 2/3 for the pure
upwind operator). However, we already mentioned that this good convergence rate is only achieved after
many sweeps with a much poorer convergence. Fig. 2.2 demonstrate the residual convergence history for
different representative vales of the incoming frequency ω2 and the non-alignment parameter t. In the legend,
the corresponding amplification factors (the asymptotic convergence rate (ρ(Gr)) and the convergence rate
bound (‖Gr‖2)) calculated by the methodology explained in Sec. 2.2 are shown. In all the numerical tests
performed for the homogeneous problem (1.4) (fi1,i2 = 0) on the uniform grid with meshsize h = 2−6, the
iterations was stopped when the residual L2 norm became less than 10−10. The results of the tests can be
summarized as following.

1. The asymptotic convergence rate is always good enough and the ρ(Gr) estimate is its accurate
prediction. However, this good convergence is manifested only either on very fine grids or after a
lot of iterations.

2. The bound ‖Gr‖2 is not very sharp in the presented tests. The full space Fourier analysis (eliminating

17



the characteristic components from the consideration) gives a similar estimate (see [5]). It, probably,
means that in order to observe this “worst” behavior one should test non-homogeneous problems.

3. The number of sweeps required to get into the asymptotic convergence regime is roughly propor-
tional to the ratio min(R, d2)/d1, where d1 (2.18) and d2 (2.15) are the first and the second order
penetration distance parameters respectively. This number grows roughly as h−1/3 in passing to
finer grids.

4. For any given incoming frequency ω2, there is a grid with small enough meshsize h (d1 = O(R)) on
which the defect-correction iterations demonstrate the asymptotic convergence rate from the very
beginning.

3. Defect-Correction Method with Second Order Driver (DC2). The second order accurate
upwind discretization is defined as

L2
nui1,i2 =

1
2
√

1 + t2h

((
3ui1,i2 − 4ui1−1,i2 + ui1−2,i2

)
(3.1)

+t
(
3ui1,i2 − 4ui1,i2−1 + ui1,i2−2

))
;

i1 = 1, 2, . . .N, i2 = 1, 2, . . .N ;

u0,i2 = g(i2h), u−1,i2 = g′(i2h).

It is stable in marching and can serve as a driver for the defect-correction iterations.

We tested the DC2 iterations for the same test-cases as in Sec. 2. In all the experiments on all the
grids, the number of DC2 iterations required to get 1% accuracy did not exceed 3 (including the first sweep
marching the driver operator (3.1) to obtain the initial approximation). The residual convergence rate history
shown on Fig. 3.1 confirms the predicted efficiency of the defect-correction method with the second order
driver and demonstrates the reliability of the residual convergence analysis introduced in Sec. 2.2.

4. Adaptive Multigrid Algorithm (AMA). Any adaptive multigrid solver is usually required to
make two important decisions. The first is to decide on stopping iterating on the given grid and proceeding
to the next fine grid. The second issue is to realize that the required approximation is achieved and finish
its work.

Some prior information being incorporated into the solver can improve its performance a lot. For
example, if the amplitudes of all the significant (for the given ε-accuracy) Fourier components of the inflow
boundary conditions can be estimated, then many calculations can be performed in advance. In particular,
using the half-space analysis for the highest frequency essential Fourier component, one can find the optimal
grid spacing h and the number of the defect-correction iterations on that grid required to achieve the desired
accuracy. Then, a single-grid algorithm performing the necessary Nsweeps iterations seems to be the optimal
solver.

For general boundary conditions, this approach does not work. In case of general boundary conditions,
however, all the decision should be done “automatically” employing only the data computed during the
solution process. The algorithm we propose in this section is based on the full multigrid methodology where
the comparison between solutions on different grids becomes a criterion for stopping further refinement.
The adaptive multigrid algorithm solving the problem to the ε-accuracy can be recursively defined in the
following 5 steps:
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Fig. 3.1. DC2: residual convergence rate history.

1. Let u2h be the solution on the grid with meshsize 2h. On the grid with meshsize h for the given ε-
accuracy, the highest possible incoming frequency ω̄ for which this accuracy is achievable is calculated
from the half-space analysis. The required number of the sweeps Nsweeps is defined as well.

2. The initial approximation on the interior of the h-grid is obtained by (bilinear) solution interpolation
from the 2h-grid.

3. One defect-correction iteration is performed and an approximate solution ũh is obtained.
4. If the L∞ norm of the difference between ũh and u2h is less than ε then ũh is the final solution.

Solver finishes its work.
Otherwise, additional defect-correction sweeps are performed. The iterations on the h-grid are
stopped when either the L∞ norm of the difference between the two successive approximations
becomes less than ε or the total number of sweeps (including the first one performed in the Step 3)
reaches the corresponding h-grid Nsweeps. In fact, as one can see from the numerical tests below,
the latter tolerance was reached only on relatively coarse grids, where the target discretization has
no accuracy at all. The last approximation is considered as the h-grid solution uh.

5. h replaced with h/2. Go to Step 1 for the next fine grid.

Table 4 collects ω̄ and Nsweeps values on grids with different meshsizes h for ε = 0.01. In this table,
ω̄ is the highest frequency resolved in the target second order operator on the h-grid to the ε-accuracy for
any angle of attack (0 ≤ t ≤ 1) and Nsweeps is the number of DC1 sweeps ensures the convergence within
this accuracy. We found from the analysis and checked in numerical tests that on grids with h ≥ 2−7 the
maximal cross-characteristic interaction defining ω̄ is observed for the diagonal alignment case (t = 1) while
on the finer grids the strongest interaction occurs at t ≈ 0.6. The maximal Nsweeps is always found at the
diagonal alignment.

If the driver is second order accurate then on all the grids the number of required DC2 sweeps is bounded
to Nsweeps = 3.

The Figs. 4.1 and 4.2 demonstrate the performance of AMA based on DC1 and DC2 defect-correction
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Table 4.1

Limits for iterating DC1 scheme on different grids.

h 2−4 2−5 2−6 2−7 2−8 2−9 2−10 2−11 2−12 2−13 2−14

ω̄ 1.1π 1.9π 3.2π 5.4π 8.6π 13.7π 21.8π 34.7π 55.1π 87.6π 139.1π

Nsweeps 5 6 7 9 9 10 12 14 16 18 21
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Fig. 4.1. DC1: Adaptive multigrid algorithm (DC1-AMA).

iterations. The input data were chosen so that the function U(x, y) = sin
(
ω2(y− tx)

)
is the exact solution of

(1.1), (1.3). The non-alignment parameter was set to t = 0.8. We tested different frequencies ω2 providing a
smooth solution to the problem with y-periodic boundary conditions for which the 1%-accurate solution can
be obtained on a grid with h ≥ 2−9. The vertical coordinate on the figures marks (logarithm of) the total
error and vertical lines separate the results corresponding to calculations on different grids. The first value
on each grid (except the coarsest grid) is the value of the total error after the solution interpolation from the
previous coarse grid. All the next values indicate the total error after the corresponding defect-correction
iterations. The adaptive algorithm proved to be quite efficient requiring one extra level iteration at most to
ascertain that the 1%-accuracy is already achieved. This is a very reasonable cost equal to the cost of few
additional sweeps on the coarsest possible grid where the 1%-accuracy could be reached.

The small number of iterations performed by DC1-AMA on the fine grids does not disprove the claim
that the number of required iterations might grow on the fine grids. The accuracy considerations make sense
only for differentiable solution. The three solution conditions (the vertical periodicity, the 1%-accuracy on
a grid with h ≥ 2−9 and the differentiability) together leave us just a few allowed components (only those
with ω2 = 2πk, k = 0, 1, 2, 3, 4, 5, 6). Therefore, we have no chance to approach on the tested grids the
ω̄-component which realizes this predicted behavior. Of course, on finer grids the expected behavior is much
likely to be manifested.

The efficiency of DC2-AMA seems to be nearly optimal.
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Fig. 4.2. DC2: Adaptive multigrid algorithm (DC2-AMA).

5. Conclusions. To summarize the practical results of the research reported in this paper we make
the following conclusions:

1. The efficiency of the defect-correction method with the first order driver is grid dependent. The
number of iterations required to reach the desired accuracy (or the asymptotic convergence rate
regime) might grow on the fine grids (roughly as h−

1
3 ).

2. Using the second order driver in the defect-correction iterations eliminate this dependence resulting
in a very efficient solver. We are aware that in many cases the choice of the first order driver
is dictated by external reasons. For example, in solving discretized multidimensional hyperbolic
systems of equations where downstream marching is impossible, first order schemes are considered
to be much easier to solve than higher-order schemes. Nevertheless, we believe that even in such
cases the opportunity of employing the second order driver should be carefully studied.

3. Any robust solver using defect-correction iterations should adopt the adaptive multigrid approach.
Several further simplifications can be suggested on this way. For example, if the boundary conditions
and/or the problem geometry prove to be too complicated, so that it seems hard to estimate Nsweeps

on each grid, then the second criterion in Step 4 for stopping iterations on a given grid (performing
all Nsweeps iterations) can be omitted. In many cases this results in some additional work on coarse
grids but does not affect the total work count.

4. The discrete half-space analysis described in Sec. 2.1 is an accurate and very efficient tool for
predicting actual solution behavior.

5. The defect-correction iterations converge residuals to the computer zero. The asymptotic conver-
gence rate and an upper (but not the sharpest) bound can be calculated by means of the matrix
analysis reported in Sec. 2.2
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